基于人工蜂群算法的二维最小误差阈值分割  被引量:2

Two-dimensional minimum error thresholding method based on the artificial bee colony algorithm

在线阅读下载全文

作  者:张新明[1] 冯文惠[2] 何文涛[1] 王鲜芳[1] 

机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007 [2]河南牧业经济学院计算机系,河南郑州450044

出  处:《广西大学学报(自然科学版)》2013年第5期1126-1133,共8页Journal of Guangxi University(Natural Science Edition)

基  金:国家自然科学基金资助项目(61173071);河南省重点科技攻关项目(132102110209)

摘  要:鉴于人工蜂群算法(Artificial Bee Colony algorithm,ABC)常用于连续域,具有控制参数少、操作简单和易于实现等优点和二维最小误差阈值分割法复杂度高的问题,提出一种基于人工蜂群算法的二维最小误差阈值分割方法(Two-dimensional Minimum Error Thresholding based on Artificial Bee Colony algorithm,TMET-ABC)。针对离散域的二维最小误差阈值分割方法,对标准的ABC算法进行修改,构建离散域的人工蜂群算法;依据最小误差公式中变量的三种不同计算方式,提出了3种TMET-ABC方法:直接计算TMET-ABC、数组计算TMET-ABC和递推计算TMET-ABC。仿真结果表明,提出的3种方法能够在达到现有的二维最小误差阈值分割法的分割效果同时,大大加快运行速度,并且3种方法可应用于不同的分割场合。In view of the high complexity of the two-dimensional minimum error thresholding meth- od, and simple processing, easy realization and a few control parameters of the artificial bee colony algorithm in a continuous domain, a two-dimensional minimum error thresholding method based on the artificial bee colony optimization algorithm (TMET-ABC) is proposed in this paper. Directed at a two-dimensional minimum error thresholding method in a discrete domain, the ABC algorithm was modified in order to create a discrete ABC algorithm. Then, three TMET-ABC algorithms were pro- posed according to three ways to get variables of two-dimensional minimum error thresholding formu- la: direct computing TMET-ABC (DTMET-ABC), array computing TMET-ABC (ATMET-ABC) and reeursive computing TMET-ABC (RTMET-ABC). Simulation results show that the three algo- rithms can greatly improve the running speed while the segmented results are as good as the existing two-dimensional minimum error thresholding method and that they can have different segmentation applications.

关 键 词:图像分割 二维阈值分割法 人工蜂群算法 最小误差 递推计算 数组计算 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象