检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉理工大学电子商务与智能服务研究中心,湖北武汉430070
出 处:《武汉理工大学学报(信息与管理工程版)》2013年第5期706-709,753,共5页Journal of Wuhan University of Technology:Information & Management Engineering
基 金:教育部人文社科基金资助项目(10YJC870007;09YJA630124);中央高校基本科研业务专项资金资助项目(2013-IV-013)
摘 要:针对电子商务应用中商品本体模型粒度过粗和细粒度语义知识匮乏的问题,提出了商品候选属性集的5类分类特征,选择进化算法对分类特征集进行优化,研究基于机器学习的商品本体细粒度语义知识获取方法。通过SVM算法执行分类实验,结果证明了5类特征集的有效性。所提出的5类特征集对于其他领域具有一定的通用性,获取细粒度语义知识也有助于构建商品细粒度语义知识库,满足电子商务应用中对细粒度商品知识的需求。When applied to E -commerce domain, the present commodity ontology model has two problems: the granularity of ontology model being too coarse and its fine - granularity semantic knowledge being too scarce. So five types of classification characters were proposed from commodity's candidate attributes. An evolutionary algorithm was chosen to optimize the classifica- tion character set. And a method to gain fine - granularity semantic knowledge was studied using supervised learning methods. The classification experiments proved the validity of the five types of character set with SVM algorithms. The proposed classifica- tion characters have a certain commonality in other areas, and the method can help to build fine - granularity semantic knowledge base of commodity, which can meet the needs of fine -granularity commodity knowledge in E -commerce field.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229