检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南大学数学与信息科学学院,开封475004 [2]河南大学应用数学研究所,开封475004
出 处:《中国图象图形学报》2013年第11期1462-1467,共6页Journal of Image and Graphics
基 金:国家自然科学基金项目(11001075);河南省教育厅自然科学基础研究基金项目(2009B110006);河南省基础与前沿技术研究计划项目(132300410150)
摘 要:最大流模型是图像分割领域强有力的工具。近年来,一种基于连续的最大流模型被提出并有效应用于图像分割。然而,该模型的空间流约束变量为全局常数,未与图像的结构特征相联系。同时,源和汇的初始值计算量大,模型的数值实现效率不甚理想。针对这些问题,结合图像的结构、统计特征和预处理算法(包括分片常数算法和最大类间方差—直方图算法),给出了连续最大流图像分割模型及算法。实验结果验证了本文算法的有效性,能够提高分割精度,加快运行速度。The max-flow model is used as a powerful tool to image segmentation problems. In recent years, a new model based on the continuous max-flow approach is presented and well adapted to segment images. However, the constraint of spatial flow in the model is simply set to a global constant, and it is not associated with architectural feature. Meanwhile, the initial terms of the source flow and sink flow need large amount of calculation, and cannot obtain satisfactory segmenta- tion results. In order to overcome these shortages, we combine architectural features and statistical features of the image and a preprocessing algorithm, which include piecewise constant algorithm and Otsu-Histogram algorithm. Experimental results verify that the model is efficient .
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249