基于神经网络的传感器网络数据汇聚模型研究  

Data-Aggregation Model based on Neural Network for Wireless Sensor Network

在线阅读下载全文

作  者:郑明才[1] 赵小超[2] 李新国[1] 李科峰[1] 

机构地区:[1]湖南第一师范学院信息科学与工程系,湖南长沙410205 [2]湖南第一师范学院教育科学系,湖南长沙410002

出  处:《通信技术》2013年第10期68-71,共4页Communications Technology

基  金:湖南省自然科学基金项目(No.12JJ6056);湖南省科技计划项目(No.2012FJ3029;No.2011FJ3079);湖南省教育厅科学研究项目(No.11C0298;No.11C0308);湖南第一师范校基金(No.XYS12N07)

摘  要:由于定向扩散路由无线传感器网络中的数据重复传送,导致数据融合困难,制约实际应用。针对定向扩散路由传感器网络特点,提出基于定向扩散和神经网络的无线传感器网络数据汇聚模型DAM-DD&NN。借助有导师学习的BP神经网络提高感知数据的精确性、降低感知数据的时间空间冗余度;借助无导师学习的神经网络降低数据传送过程中的冗余度。理论分析和仿真结果表明,DAM-DD&NN模型能提高网络的综合性能。The repeated data transmission in directed diffusion routing wireless sensor networks may result in difficult data fusion and this would hinder the practical. Based on the characteristics of directed-diffu- sion-routing wireless sensor network, DAM-DD&NN model(data-aggregation model based on directed diffusion and neural network) is proposed. With the help of BP neural network with teacher leaning, the accuracy of sensing data could be improved, and the temporal redundancy and spatial redundancy of sens- ing data be reduced. And with the aid of neural network without teacher learning, the data redundancy could be reduced in the forwarding process of data packets. Theoretical analysis and simulation results show that the DAM-DD&NN data-aggregation model could improve the comprehensive performance of wireless sensor network.

关 键 词:无线传感器网络 神经网络 数据汇聚模型 定向扩散 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象