机构地区:[1]Division of Neurotoxicology,National Center for Toxicological Research,Food and Drug Administration [2]Department of Neurology,University of Arkansas for Medical Sciences
出 处:《Neural Regeneration Research》2013年第29期2763-2774,共12页中国神经再生研究(英文版)
基 金:supported by the National Center for Toxicological Research/FDA(Protocol P00710 to He Z and Protocol P00706 to Ferguson SA);supported by UAMS Hornick Award;NIH Grant R01-NS049389;UAMS institutional funds
摘 要:One of the well-defined sexually dimorphic structures in the brain is the sexually dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexually dimorphic nucleus of the preoptic area can be delineated histologically using conventional Nissl staining or immunohistochemically using calbindin D28K immunoreactivity. There is increasing use of the cal- bindin D28K-delineated neural cluster to define the sexually dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexually dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cell activity, including proliferation and migration presumably from the 3^rd ventricle stem cell niche, may play a critical role in the postnatal development of the sexually dimorphic nucleus of the preoptic area and its distinguishing sexually dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexually dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexually dimor-phic nucleus of the preoptic area via an increase in stem cell activity originating from the 3^rd ventricle stern cell niche.One of the well-defined sexually dimorphic structures in the brain is the sexually dimorphic nucleus, a cluster of cells located in the preoptic area of the hypothalamus. The rodent sexually dimorphic nucleus of the preoptic area can be delineated histologically using conventional Nissl staining or immunohistochemically using calbindin D28K immunoreactivity. There is increasing use of the cal- bindin D28K-delineated neural cluster to define the sexually dimorphic nucleus of the preoptic area in rodents. Several mechanisms are proposed to underlie the processes that contribute to the sexual dimorphism (size difference) of the sexually dimorphic nucleus of the preoptic area. Recent evidence indicates that stem cell activity, including proliferation and migration presumably from the 3^rd ventricle stem cell niche, may play a critical role in the postnatal development of the sexually dimorphic nucleus of the preoptic area and its distinguishing sexually dimorphic feature: a signifi-cantly larger volume in males. Sex hormones and estrogen-like compounds can affect the size of the sexually dimorphic nucleus of the preoptic area. Despite considerable research, it remains un-clear whether estrogen-like compounds and/or sex hormones increase size of the sexually dimor-phic nucleus of the preoptic area via an increase in stem cell activity originating from the 3^rd ventricle stern cell niche.
关 键 词:neural regeneration review sexual orientation sexual behavior calbindin D28K estrogen-likecompound bisphenol A neural stem cells grants-supported paper NEUROREGENERATION
分 类 号:R759[医药卫生—皮肤病学与性病学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...