检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江苏大学计算机科学与通信工程学院,江苏镇江212013
出 处:《计算机应用》2013年第11期3057-3061,共5页journal of Computer Applications
摘 要:针对现有基于距离的离群点检测算法在处理大规模数据时效率低的问题,提出一种基于聚类和索引的分布式离群点检测(DODCI)算法。首先利用聚类方法将大数据集划分成簇;然后在分布式环境中的各节点处并行创建各个簇的索引;最后使用两个优化策略和两条剪枝规则以循环的方式在各节点处进行离群点检测。在合成数据集和整理后的KDD CUP数据集上的实验结果显示,在数据量较大时该算法比Orca和iDOoR算法快近一个数量级。理论和实验分析表明,该算法可以有效提高大规模数据中离群点的检测效率。The existing distance-based outlier detection algorithms suffer from low efficiency when dealing with large-scale datasets. To relieve this problem, a distributed outlier detection algorithm based on clustering and indexing (DODCI) was presented. The algorithm partitioned the original dataset into clusters by employing a certain clustering method. Then the index of each cluster was built in parallel on each distributed node. Afterwards, detection of outliers was implemented on each node looply using two optimization strategies and two pruning rules. The experimental results on synthetic dataset and preprocessed KDD CUP datasets show that the proposed algorithm is almost up to an order-of-magnitude faster than the two existing algorithms (Orca and iDOoR) when the dataset is large enough. The theoretical and experimental analyses show that the proposed algorithm can effectively raise the speed of outlier detection in large-scale datasets.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论] TP391[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151