改进和声搜索算法优化LSSVM的脑CT图像分类  被引量:1

Brain CT image classification based on least squares support vector machine optimized by improved harmony search algorithm

在线阅读下载全文

作  者:郭正红[1] 赵丙辰[2] 

机构地区:[1]河北北方学院信息科学与工程学院医学信息系,河北张家口075000 [2]邢台学院信息科学与技术系,河北邢台054001

出  处:《计算机工程与应用》2013年第22期146-149,共4页Computer Engineering and Applications

摘  要:为了提高脑CT图像的分类正确率,针对分类器中的最小二乘支持向量机(LSSVM)参数优化问题,提出一种改进和声搜索算法优化LSSVM的脑CT图像分类模型(IHS-LSSVM)。将LSSVM参数看作不同乐器的声调组合,通过和声搜索算法的"调音"找到最优参数,并在寻优过程中引入粒子群算法的最优位置更新策略,增强了算法跳出局部极小值的能力,根据最优参数建立脑CT图像分类模型,并对模型的性能进行仿真测试。仿真结果表明,相对于对比模型,IHS-LSSVM不仅提高了脑CT图像分类正确率,而且加快分类速度,是一种有效的脑CT图像分类模型。In order to improve the brain CT image classification accuracy, this paper proposes brain CT mage classification mod- el(IHS-LSSVM) based on the least squares support vector machine and harmony search algorithm. Firstly, the LSSVM parame- ters are taken as different musical tone combination, and then the harmony search algorithm is used to find the optimal parame- ters, and the optimal position adjustment strategy is introduced to enhance the ability of jumping out of local minima, the brain CT image classification model is established according to the optimal parameters, and the performance of the model is tested. The simulation results show that, compared with the other models, IHS-LSSVM not only improves the image classification accu- racy, but also accelerates the classification speed, so it is an effective brain CT image classification model.

关 键 词:脑CT图像分类 最小二乘支持向量机 和声搜索算法 粒子群优化算法 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象