检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国家数字交换系统工程技术研究中心,郑州450002
出 处:《计算机工程》2013年第11期35-40,共6页Computer Engineering
基 金:国家"863"计划基金资助项目(2011AA7116031;2011AA010604)
摘 要:现有的社区发现算法通常基于结构特性进行社区划分,对节点属性特征欠缺考虑。为此,提出一种基于模糊等价关系的社区发现算法。用完全相异距离指数的概念将拓扑结构与属性特征相结合,以此作为隶属关系建立模糊等价关系矩阵,选择合适的聚类阈值对网络进行社区划分。实验结果证明,与传统的GN算法相比,该算法发现社区的准确率较高,在相同社区内的节点连接紧密且具有同质性。Aiming at the problem that most existing community detecting algorithms are usually based on the structure characteristics of network and lack of consideration attribute infottnation, a community detection algorithm is proposed based on fuzzy equivalence relation combining topology and attribute in social networks. In this algorithm, a new concept of integrated dissimilarity distance index is used for combining topology and attribute, and it is regarded as the subordinate relation to build the fuzzy equivalence relation matrix, appropriate clustering threshold value is choses for community detection. Experimental result proves that the algorithm has high accuracy compared with those traditional GN algorithms, and nodes in the same community are densely connected as well as homogeneous.
关 键 词:社会网络 社区发现 属性 完全相异距离 模糊矩阵 等价关系
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222