检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080 [2]哈尔滨理工大学计算中心,哈尔滨150080
出 处:《计算机工程》2013年第11期52-56,共5页Computer Engineering
基 金:黑龙江省自然科学基金资助项目(F201134);黑龙江省教育厅科学技术研究基金资助项目(12511102)
摘 要:在时空数据库中,频繁更新会导致TPR树更新与查询性能下降。针对该问题,提出MAH_TPR索引方法,分别对预处理过程、索引结构及更新算法进行优化。在构建索引及更新操作时,通过使用空间聚类来减少节点间空间区域的交叠几率。引入基于磁盘的Hash辅助存储结构,在直接访问叶节点的基础上进一步减少磁盘I/O的操作。引入基于内存的移动对象辅助存储结构,用于存储发出频繁更新请求,以避免主索引结构节点的合并和分裂。实验结果表明,MAH_TPR索引方法的查询性能优于HTPR方法和LGU方法,更新性能优于HTPR索引方法。The MAH TPR indexing method is proposed which aims to solve the problem of decreased update performance and query performance because of frequent updates in spatial-temporal database. This method is optimized by prepared processing, indexing structure and update algorithm. Overlapping probability among the spatial areas of nodes is significantly reduced by using the spatial clustering in structuring indexing and updating. The leaf nodes can be accessed directly and further the disk I/O operation is decreased by introducing a disk-based hash auxiliary structure. Node merging and splitting in main indexing structure are avoided by employing a memory-based auxiliary storage structure which is used to store the moving objects that have frequent update requests. Experiments in update and query performances of the method are studied, The results show that the MAH_TPR indexing method has a better query performance than HTPR indexing method and LGU indexing method. Its update oerformance is better than that of HTPR indexing method.
关 键 词:频繁更新 空间聚类 MAH_TPR索引构建 MAH_TPR索引更新 移动对象 Hash辅助存储结构
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51