检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]轻工过程先进控制教育部重点实验室(江南大学),江苏无锡214122
出 处:《光电工程》2013年第11期89-94,共6页Opto-Electronic Engineering
基 金:国家自然科学基金(60574051);江苏省产学研联合创新资金-前瞻性联合研究项目(BY2012067)
摘 要:针对Shearlet变换在提取特征数据时存在冗余性以及无法对全局特征进行稀疏表征的缺点,提出了一种Shearlet多方向特征融合与加权直方图的人脸识别算法。首先,对原始图像采用Shearlet变换得到多尺度多方向的人脸特征,然后按照两种编码方式将同一尺度下不同方向的特征进行编码融合,并将融合后的尺度图像划分为若干大小相等的不重叠矩形块,利用Shannon熵理论对各子模式进行加权融合。在ORL、FERET和YALE人脸库中做了多组实验,充分证明该算法相对于传统Shearlet滤波器在分类识别上更具有优势。The Shearlet multi-orientation features fusion and weighted histogram are proposed to overcome the disadvantage of Shearlet transform, which has data redundance in extracting features and cannot sparsely represent the global characters. First, Shearlet transform is used to extract the multi-orientation facial features. Then two coding methods are proposed to fuse the features from different directions of the same scale into a single feature, and the fused image is divided into a number of equal-sized nonoverlapping rectangular blocks, weighted fusion of each model using the Shannon entropy theory. Many experiments have been done on the ORL, FERET and YALE face database, which fully proved that this method has more advantages in terms of recognition than the traditional Shearlet.
关 键 词:人脸识别 加权直方图 特征融合 SHEARLET变换
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171