检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京师范大学信息科学与技术学院,北京100875
出 处:《光学精密工程》2013年第11期2960-2972,共13页Optics and Precision Engineering
基 金:国家自然科学基金资助项目(No.41272359);北京市自然科学基金资助项目(No.4102029);国家863高技术研究发展计划资助项目(No.2007AA12Z156)
摘 要:遥感图像配准是图像融合、多光谱分类、环境监测和图像镶嵌等不可缺少的步骤。本文讨论了遥感图像领域中重要的和最新的配准算法,将配准方法划分为基于区域的配准、基于图像特征的配准、基于混合模型的配准和基于物理模型的配准四类;描述了四类配准方法中的典型算法,并分析了它们的优势和不足,重点概述了基于特征配准中的局部不变特征变换算法。评述了国内外遥感图像配准的发展现状;指出了遥感图像配准技术中存在的问题,即多源遥感图像的配准、遥感图像配准的实时性、遥感图像的非线性配准和遥感图像配准的精度评价,最后展望了遥感图像配准技术的发展前景。Remote sensing image registration is an indispensable part for remote sensing image fusion, multispectral classification, environmental monitoring, image mosaicing and so on. In this paper, the important and latest registration methods for remote sensing are discussed and are divided into four types, including area-based methods, feature-based methods, hybrid-based model methods and physi- cally-based model methods. Then, the classic algorithms of each type are analyzed respectively, and their advantages and shortcomings are also stated. The scale invariant feature transform algorithms are mainly discussed. Furthermore, the difficulties of remote sensing image registration techniques are summarized, including the multi-source remote sensing image registration, the real-time registration of remote sensing image, the nonlinear registration of remote sensing image and the accuracy evalua- tion of remote sensing image registration. Finally, the prospects of image registration are pointed out.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.176