检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘朝晖[1] 梅全喜[2] 黄榕波[3] 温预关[4] 李明亚[5]
机构地区:[1]广东省中山市中医院药剂科,广东广州528400 [2]广东省中山市中医院科教科,广东中山528400 [3]广东药学院基础学院,广东广州510006 [4]广州市脑科医院国家药品临床研究基地,广东广州510370 [5]广东药学院药科学院,广东广州510006
出 处:《今日药学》2013年第10期633-636,共4页Pharmacy Today
基 金:国家自然科学基金(编号:10926191);中山市科技计划资助项目(编号:20102A024)
摘 要:目的建立基于径向基(RBF)神经网络舒必利稳态血药浓度预测模型。方法将所收集的用于建立舒必利稳态血药浓度预测模型的数据(包括患者的性别、年龄、体重、剂量、稳态血药谷浓度、多项生理生化指标等)分为训练集、校验集和测试集,前两者用于训练RBF神经网络,后者用于测试RBF神经网络,分别利用各数据集的网络计算输出值与目标输出值之间的均方差(MSE)和相关系数(R)评价网络模型的训练效果和预测性能。结果建立以患者的性别、年龄、体重、剂量、多项生理生化指标等37项参数为输入变量,舒必利稳态血药浓度为输出变量的37-1-1结构的RBF神经网络,当网络中心宽度SP值为2.3时,训练集、校验集和测试集的MSE分别为4.50×10-6、0.003 531和0.011 001,R值分别为0.999 91、0.955 32和0.814 25。结论利用RBF神经网络所建立的舒必利稳态血药浓度预测模型的预测效果较好,但泛化能力尚待提高。Objective To establish a model for predicting the steady-state plasma concentration of sulpiride based on radial basis function (RBF) neural network. Methods The data ( including the patients' gender, age, dose, weight, dosage, steady-state plasma trough concentration and multiple physiological and biochemical indexes, etc. ) to modeling the steady-state plasma concentration of sulpiride was divided into training set, validation set and test set. The first 2 was used for training the RBF neural network, the latter was used for testing the RBF neural network. The error of mean square (MSE) and coefficient correlation (R) between the computed output value and objective output value of every data sets was used for evaluating the training and predictive effect of the RBF neural network, respectively. Results The 37-1-1 RBF neural network model was established which had captured the relationships between the input variables (the patients' gender, age, dose,weight, dosage and multiple physiological and biochemical indexes etc. 37 parametes) and the output variable ( the steady-state plasma concentration of sulpiride). When SP value, that is the network center width,was 2.3,the MSE and R values of the training set,validation set and test set were 4.50 x 10 -6,0. 003 531,0.011 001 ,and 0. 999 91,0. 955 32,0. 814 25, respectively. Conclusion The RBF neural network model has the better predictive effect to predict the steady-state plasma concentration of sulpiride. But it' s generalization is required to be improved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200