检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]青岛理工大学琴岛学院基础部,青岛266106
出 处:《青岛理工大学学报》2013年第5期25-28,66,共5页Journal of Qingdao University of Technology
摘 要:桥梁在交通事业中的作用越来越重要,而对桥梁结构的健康监测是当今研究的热点问题,桥梁上移动荷载的识别作为桥梁结构健康监测的基础环节,是决策者进行结构安全评估和交通规划的重要依据.其中利用BP神经网络进行识别是重要的也是目前最热门的方法,而神经网络中参数的确定最为重要.提出一种全新的改进的细菌觅食算法以确定网络参数,数值模拟证明可取得相对较好的识别结果.Bridges prove to be more important to the transportation of China; and the health monitoring of bridge structures in today's engineering research is a hot topic. As the founda- tion of health monitoring, moving loads identification is an important basis for the policy- maker to carry on the structure security evaluation and the transportation planning. Apply- ing the BP neural network theory to identify the moving loads of the bridge is not only vital but also the hottest method, while the most important is to find out the biases and weights of neural network. This paper proposes an Improved Bacteria Foraging Optimization algorithm to get the biases and weights of neural network. The numerical simulation shows that the method is relatively better to identify the moving load.
关 键 词:桥梁动载识别 BP神经网络 改进细菌觅食算法(IBFO)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33