时间序列数据降维和特征表示方法  被引量:21

Method of dimensionality reduction and feature representation for time series

在线阅读下载全文

作  者:李海林[1,2] 杨丽彬[1] 

机构地区:[1]华侨大学工商管理学院,福建泉州362021 [2]大连理工大学系统工程研究所,辽宁大连116024

出  处:《控制与决策》2013年第11期1718-1722,共5页Control and Decision

基  金:中央高校基本科研业务费项目(12SKGC-QG03);福建省社会科学规划项目(2013C018)

摘  要:数据降维和特征表示是解决时间序列维灾问题的关键技术和重要方法,它们在时间序列数据挖掘中起基础性作用.鉴于此,提出一种新的时间序列数据降维和特征表示方法,利用正交多项式回归模型对时间序列实现特征提取,结合特征序列长度对时间序列的拟合分析结果,运用奇异值分解方法对特征序列进一步降维处理,进而得到保存大部分信息且维数更低的特征序列.数值实验结果表明,新方法可以在维度较低的特征空间下取得较好的数据挖掘聚类和分类效果.Dimensionality reduction and feature representation are the key technique and important methods to address the issue of dimensionaiity curse for time series. Meanwhile, they are a basis task in the field of time series data mining. Therefore, a novel method of dimensionality reduction and feature representation is proposed. An orthogonal polynomial regression model is used to obtain a feature sequence from an original time series. Furthermore, singular value decomposition combining with the fitting results of the feature sequence to time series is used to reduce the dimensionality of feature sequence and obtain another feature sequence with lower dimension to retain most of the information. The results of numerical experiments demonstrate that the novel method can obtain a good effect of clustering and classification in time series data mining under the space with lower dimensionality.

关 键 词:时间序列 数据降维 特征表示 数据挖掘 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象