检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋新山[1] 王宇晖[1] 严登华[2] 陈燕[1] 丁怡[1]
机构地区:[1]东华大学环境科学与工程学院,上海201620 [2]中国水利水电科学研究院水资源研究所,北京100044
出 处:《系统工程理论与实践》2013年第11期2986-2992,共7页Systems Engineering-Theory & Practice
基 金:国家重点基础研究发展计划(973计划)(2010CB951102);国家自然科学基金(51079028);上海市自然科学基金(10ZR1400300)
摘 要:小波分析可用于揭示旱灾时序数据的演变规律,这对其早期预警具有重要意义.利用我国近60年的的旱灾成灾率时序数据,在探讨其分形及小波特征基础上,利用Mallat算法进行了多分辨小波分解与重构.结果显示:中国旱灾时序数据存在分形特征,其最小嵌入维为6;6层小波分解与重构能够清晰揭示其时序变化的多个周期,其中30-35年(中心32年)周期上能量密度最大.研究证明:1)分维计算中的最小嵌入维作为小波分解的最大有效分解层数可行,通过对旱灾成灾率时序数据的分析也证实了该猜想,这拓展了分形计算的应用.2)我国旱灾成灾率受6个实质性状态变量驱动,具有多周期特征.目前仍处于旱灾成灾率的增长期.The wavelet analysis can be used to disclose the evolution law of drought disaster ratio time series (DDRTS), which is important to the drought disaster early warning. Based on the wavelet and fractal analysis on the 59 years time series of drought disaster ratio in China, the original time series was decomposed and reconstructed using Mallat multi-resolution wavelet algorithm. The fractal analysis results showed that the Chinese DDRTS had obvious fractal characteristics, which minimum embedding dimension is six. The multi-resolution wavelet analysis results showed that the Chinese DDRTS had obvious multi-period characteristics, which the 30-35 years change period has maximum energy density. The following conclusions can be drawn. 1) The minimum embedding dimension of fractal analysis can be served as a maximum effective decompose level for the Mallat multi-resolution wavelet analysis, which is helpful to enlarge the application field of fractal analysis. 2) The evolution of Chinese DDRTS was driven by six independent state variables, and had obvious multi-period characteristic. As a whole, the drought disaster ratio remained to be in a growth period at present.
分 类 号:X110[环境科学与工程—环境科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.217