检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄廷林[1] 戴雪峰[1] 张卉[1] 何文杰[2] 韩宏大[2]
机构地区:[1]西安建筑科技大学环境与市政工程学院,陕西西安710055 [2]天津市自来水集团有限公司,天津300040
出 处:《中国给水排水》2013年第23期64-68,共5页China Water & Wastewater
基 金:国家自然科学基金资助项目(50978213);天津市科技支撑计划项目(11ZCKFSF01700)
摘 要:针对大城市多水源供水系统的特征,以测压点压力的BP神经网络模型代替管网水力平衡方程组,建立了多水源供水系统的一级优化调度模型。采用混合罚函数法处理约束条件,将约束优化问题转化为无约束问题,然后采用粒子群算法(PSO)对问题进行求解。为避免算法陷入局部最优,提高算法精度,将混沌搜索引入到标准粒子群算法中形成了混沌粒子群算法,能够充分发挥二者的优势。最后,将上述模型应用于天津市供水系统,优化后的供水方案每日可使泵站电耗降低4 087 kW·h,年节省电量约149.2×104kW·h,总费用减少2.13%,经济效益明显,证明了模型的适用性和算法的可行性。According to the features of multi-source water supply systems in big cities, the hydrau- lic balance equations were replaced by a BP neural network model of nodal pressures, and a primary optimal scheduling model of the multi-source water supply system was built. The constrained optimization problem was changed to an unconstrained problem after the mixed penalty method was used to treat con- straint conditions, and the particle swarm optimization (PSO) algorithm was used to solve the problem. To avoid the algorithm getting into a local optimum and improve the precision of the algorithm, the chaos search was brought into the standard PSO algorithm to form the chaotic PSO algorithm. The model was applied to the Tianjin water supply system. The optimized water supply scheme could reduce power con- sumption of pumping stations by 4 087 kW - h daily and 1. 492 million kW - h annually, and the total cost was reduced by 2.13%. This clear economic benefit indicated the applicability of the model and the feasibility of the algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.51