检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周侗[1,2] 龙毅[2] 舒方国[2] 陈林[2] 许文帅[2] 李国辉[2]
机构地区:[1]南通大学地理科学学院,江苏南通226007 [2]南京师范大学虚拟地理环境教育部重点实验室,江苏南京210046
出 处:《地理与地理信息科学》2013年第6期30-34,共5页Geography and Geo-Information Science
基 金:国家自然科学基金项目(41171350;41301514);高等学校博士点基金资助项目(20103207110012);江苏省高校自然科学研究资助项目(13KJB170020);南通市市级科技创新计划项目(HS2012044)
摘 要:将Agent与多Agent系统的相关理论、方法引入到地图多要素协同综合中,分析了Agent技术应用于地图自动综合的优势,设计了基于Agent的要素协同综合概念模型,构建了综合Agent的分类体系,分析了各类综合Agent的知识规则与综合行为,并研究了如何基于知识规则实现自动综合的推理过程,旨在为地图自动综合的全局化、智能化探索一条新途径。This paper first introduced the multi-Agents theory and methods to map feature coope;ative generalization. The char acteristic of multi-Agent and the advantages of its use in automatic map generalization were analyzed. The conceptual model of cooperative generalization based on multi-Agents was designed. The classification system of generalization Agent was construc- ted. What's more,generalization Agent was further broken down into feature-Agent,object-Agent and group-Agent, and struc ture models of these Agents were designed. Different knowledge rules and generalization acts of different Agents were analyzed. The way how to reach reasoning process of automatic generalization based on knowledge rules was researched. Different results could be reached by setting different rules in generalization. However, it needs to be noted that generalization result should be set on powerful knowledge rules. Thus, establishing a powerful map knowledge base and researching self-learning characteristics of the Agents were the key issues in cooperative generalization based nn Agent.
分 类 号:P283.7[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.171.199