检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:纪超[1] 刘慧英[1] 孙景峰[1] 贺胜[1] 黄民主[1]
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《红外与激光工程》2013年第11期3156-3162,共7页Infrared and Laser Engineering
基 金:航空基金资助课题(2012ZC53042)
摘 要:提出基于超像素建立物体似然概率模型来检测图像的显著区域。首先根据显著性原理和物体的自然属性分析影响物体显著度大小的因素;然后使用SLIC算法把图像分成K个超像素,并根据纹理、颜色、梯度特征信息建立不同准则下显著物体概率的计算模型:包括类内紧凑性、颜色空间分布估计以及边缘连续性;再结合细胞调节和指数函数的特征对每个准则下的显著物体概率组合得到物体的似然概率;最后利用该算法在较复杂的场景中对显著区域进行提取实验,证明该算法比其他算法更高效。Establishing calculation model on the probability of saliency objectness likelihood based on superpixels was introduced to dectect image saliency. At first, factors which affected the size of saliency were analyzed according to the principle of saliency and natural characteristics; And then the SLIC algorithm was used to divide image into K superpixels; Next, according to the texture, color and gradient feature information, calculation models were established on probability saliency object under different rules: including compactness in class, color spatial distribution estimation and edge continuity; Moreover, integrating the probability of saliency object under each rule to get the probability of objectness likelihood according to the characteristics of combining with activity in cells responding to stimuli and exponential function; Finally some experiments extracting regions of interest from complex scenes prove that the proposed algorithm is more efficient than other algorithms.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3