VERTEX-FAULT-TOLERANT CYCLES EMBEDDING ON ENHANCED HYPERCUBE NETWORKS  被引量:1

VERTEX-FAULT-TOLERANT CYCLES EMBEDDING ON ENHANCED HYPERCUBE NETWORKS

在线阅读下载全文

作  者:张艳娟 刘红美 刘敏 

机构地区:[1]College of Science,China Three Gorges University

出  处:《Acta Mathematica Scientia》2013年第6期1579-1588,共10页数学物理学报(B辑英文版)

基  金:supported by NSFC(11071096 and 11171129);Hubei Province,China(T201103)

摘  要:In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.

关 键 词:enhanced hypercube fault tolerance cycles embedding 

分 类 号:O157.5[理学—数学] TP316.7[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象