检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘宏[1,2] 王喆[1,2,3] 王向东[1,2] 赵国英 钱跃良[1,2]
机构地区:[1]中国科学院计算技术研究所普适计算研究中心,北京100190 [2]移动计算与新型终端北京市重点实验室,北京100190 [3]中国科学院大学,北京100049 [4]Center for Machine Vision Research,Department of Computer Science and Engineering,University of Oulu
出 处:《计算机辅助设计与图形学学报》2013年第12期1818-1825,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(60802067;61202209);北京市自然科学基金(4122079)
摘 要:针对盲人避障系统的实时性和鲁棒性要求,提出了基于单帧RGB-D图像的场景自适应分割和障碍物检测方法.针对室内场景存在较多的平面结构的特点,首先利用深度信息进行由粗到细的两阶段平面快速提取;然后提出了基于图论的RGB-D场景自适应分割算法,将基于深度信息的平面分割结果和基于RGB的图像分割进行自适应的权重融合;最后提出了多层次的障碍物检测识别策略,将场景区域识别为地面、桌面、墙面以及其他障碍物,并给出了场景分析结果的简化模型.实验结果表明,文中方法结合深度数据的优势以及场景的几何结构特点,有效地提高了场景分割和障碍物检测的实时性和鲁棒性,能够满足盲人室内避障应用需求.To develop real time and robust travel aids system for the blind, this paper introduces an adaptive scene segmentation and obstacle detection algorithm based on RGB-D data. Firstly, a rough-to-fine plane segmentation algorithm based on depth data is used, which makes use of the indoor structure information. Secondly, a graph-based scene segmentation algorithm is introduced, which adaptively combine the results of plane segmentation and RGB image segmentation. Thirdly, a multi- level object detection strategy is applied to recognize segmentations as ground, desk, wall or other obstacle. Finally, a simplified 3D reconstruction of the scene is used to demonstrate the analysis results. The experimental results show the proposed method effectively improves performance of scene segmentation and obstacle detection, which well combines depth data and geometry structural information of indoor scene. The proposed algorithm is fast and robust, which can be applied to indoor obstacle avoidance system for the blind.
关 键 词:深度传感器 平面提取 场景分割 障碍物检测 盲人避障
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147