检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军信息工程大学信息系统工程学院,郑州450002
出 处:《计算机工程》2013年第12期148-151,156,共5页Computer Engineering
基 金:国家自然科学基金资助项目(60903221;61272490)
摘 要:现有盲检测技术在实际检测中,由于嵌入算法未知导致检测困难。为此,提出一种基于Boosting算法融合的图像隐写分析方法。通过训练分类器建立不同隐写算法下的分类器模型,利用Boosting算法计算各分类器的分类性能,对各分类器的概率输出进行融合,得到最终检测结果。基于典型空间域隐写算法和JPEG隐写算法的实验结果表明,该方法实现了对多种隐写算法的有效检测,应用Boosting算法融合后整体检测性能提升了约2%。The existing detection algorithms are difficult to obtain high detection accuracy when applied to the condition, in which the embedding algorithm of the stego-images is unknown. 'Therefore, this paper proposes a steganography-unknown image steganalysis method based on Boosting fusion. It obtains various classifying results by establishing steganography algorithm classifier models in the training phase, and acquires the performance of these classifies according to the Boosting algorithm. The final detection result is obtained by combinational rule based on probability output. The detection work is presented to attack the current different spatial domain and JPEG steganographic algorithms. Extensive experimental restdts show that this proposed method is effective for multi-steganographic algorithms, and Boosting takes advantage of the individual strengths from each detection system and whole detection performance is probably increased by 2%.
关 键 词:信息隐藏 数字隐写 隐写分析 BOOSTING算法 分类器融合 支持向量机
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.35.130