检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军理工大学通信工程学院,南京210007 [2]南京电讯技术研究所,南京210007
出 处:《计算机工程与应用》2013年第24期61-64,129,共5页Computer Engineering and Applications
基 金:国家自然科学基金青年基金项目(No.61102092)
摘 要:针对单节点能量检测法存在的"隐藏终端"和检测准确性低以及协作频谱感知算法大多采用等权重进行数据融合,未考虑不同节点所处的通信环境对检测性能的影响等问题,提出一种基于改进型能量检测的自适应加权协作频谱感知算法。该算法通过对单节点能量检测方法的改进,在单节点检测错误概率最小的条件下,导出了信噪比与判决门限的关系式,利用二分法求得不同信噪比下的动态门限值,得到相应的虚警概率和检测概率,以虚警概率和检测概率的函数作为加权因子进行数据融合。仿真结果表明,所提算法使协作感知系统在低信噪比条件下也能获得可靠的检测性能。The singlenode energy detection has the drawbacks of low detection accuracy and "hidden terminal" while coopera tive sensing algorithms usually use equivalent weights for data fusion instead of considering the influence to the detection perfor mance resulting from communication environment of different nodes. In order to solve the above problems, this paper proposes an adaptive weighted cooperative spectrum sensing algorithm based on improved energy detection which improves single node energy detection and derives the relationship between SignaltoNoise Ratio (SNR) and decision threshold under the condition of minimal error probability. This paper adopts dichotomy to get dynamic threshold values and corresponding false probability and detection probability at different SNR. It regards the function of false probability and detection probability as the weighted factor to do data fusion. The simulation results show that the proposed algorithm can achieve reliable detection performance of cooperative sensing system with low SNR.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.225.66