检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川师范大学数学与软件科学学院,四川成都610066
出 处:《四川师范大学学报(自然科学版)》2013年第6期811-819,共9页Journal of Sichuan Normal University(Natural Science)
基 金:四川省应用基础项目基金(2010JY0121);四川省教育厅自然科学重点基金(09ZA091);教育部博士点基金(20105134120002)资助项目
摘 要:Tykhonov适定性与Levitin-Polyak适定性在研究各类最优化问题和变分不等式算法的收敛性中起着重要的作用.近年来,随着向量优化问题的出现和日渐成熟,对适定性的研究也开始在向量优化问题中进行.首先,提出了Banach空间中广义向量混合变分不等式扰动Levitin-Polyak适定性的概念,研究了广义向量混合变分不等式扰动Levitin-Polyak适定性的度量性质.其次,定义了广义向量混合变分不等式的gap函数,建立了广义向量混合变分不等式的扰动Levitin-Polyak适定性与其对应的gap函数相关的极小化问题的适定性的等价关系.到目前为止还没有关于广义向量混合变分不等式的扰动Levitin-Polyak适定性的结果,因此研究此类问题是非常有意义的.Tykhonov and Levitin-Polyak well-posedness play a central role in the study of optimization problems.Recently,vector optimization problems have been intensively developed.Many researchers have tried to study well-possedness for vector optimization problems.First,the notion of Levitin-Polyak well-posedness by perturbations of a generalized vector mixed variational inequality is introduced in Banach spaces and some metric characterizations for the Levitin-Polyak well-posedness by perturbations of a generalized vector mixed variational inequality are presented.Second,by using the gap function of a generalized vector mixed variational inequality,the equivalent relationship between the Levitin-Polyak well-posedness by perturbations of a generalized vector mixed variational inequality and the related minimizing problem are established.So far,there are no results about Levitin-Polyak well-posedness by perturbations of a generalized vector mixed variational inequality,so it is very interesting to study this problem.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112