检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘晓明[1] 王丽君[1] 侯春光[1] 赵洋[1] 刘湘宁[2]
机构地区:[1]沈阳工业大学电气工程学院,沈阳110870 [2]中航工业天津航空机电有限公司科研设计所,天津300308
出 处:《沈阳工业大学学报》2013年第6期606-612,共7页Journal of Shenyang University of Technology
基 金:国家自然科学基金资助项目(50877048);辽宁省教育厅优秀人才支持计划资助项目(LR2011002)
摘 要:为了实现低压串联故障电弧的有效诊断,基于ULI699标准搭建了交流电压为220 V、频率为50 Hz的串联故障电弧实验平台,并对不同负载回路正常工作电流以及串联故障电弧电流进行数据采集,提出基于小波包能量熵的低压串联故障电弧诊断方法.通过对电流信号进行4层小波包分解,提取小波包能量熵作为特征向量描述故障电弧电流信号在不同频段的能量分布.采用主元分析(PCA)法提取特征向量的主元作为BP神经网络的输入,实现样本最优压缩以简化神经网络结构.仿真结果表明,该方法故障诊断准确率较高,能够有效地识别串联故障电弧.In order to effectively diagnose the low voltage series arc fault, the experimental platform for series arc fault under AC voltage of 220 V and frequency of 50 Hz was established based on the UL1699 standard. The data collection for both normal working current and series arc fault current under different load loops was performed, and the diagnosis method for low voltage series arc fault based on wavelet packet-energy entropy was proposed. Through the four-layer wavelet packet decomposition of current signals, the wavelet packet-energy entropy was extracted as the feature vectors to describe the energy distribution of arc fault current signals under different frequency bands. The principal components of feature vectors were extracted as the input of BP neural network with the principal component analysis (PCA) method. Therefore, the optimum compression of samples was realized to simplify the structure of neural network. The simulated results show that the proposed method has high accurate rate of fault diagnosis, and can effectively identify the series arc fault.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249