基于小波包能量熵的低压串联故障电弧诊断  被引量:7

Diagnosis of low voltage series arc fault based on wavelet packet-energy entropy

在线阅读下载全文

作  者:刘晓明[1] 王丽君[1] 侯春光[1] 赵洋[1] 刘湘宁[2] 

机构地区:[1]沈阳工业大学电气工程学院,沈阳110870 [2]中航工业天津航空机电有限公司科研设计所,天津300308

出  处:《沈阳工业大学学报》2013年第6期606-612,共7页Journal of Shenyang University of Technology

基  金:国家自然科学基金资助项目(50877048);辽宁省教育厅优秀人才支持计划资助项目(LR2011002)

摘  要:为了实现低压串联故障电弧的有效诊断,基于ULI699标准搭建了交流电压为220 V、频率为50 Hz的串联故障电弧实验平台,并对不同负载回路正常工作电流以及串联故障电弧电流进行数据采集,提出基于小波包能量熵的低压串联故障电弧诊断方法.通过对电流信号进行4层小波包分解,提取小波包能量熵作为特征向量描述故障电弧电流信号在不同频段的能量分布.采用主元分析(PCA)法提取特征向量的主元作为BP神经网络的输入,实现样本最优压缩以简化神经网络结构.仿真结果表明,该方法故障诊断准确率较高,能够有效地识别串联故障电弧.In order to effectively diagnose the low voltage series arc fault, the experimental platform for series arc fault under AC voltage of 220 V and frequency of 50 Hz was established based on the UL1699 standard. The data collection for both normal working current and series arc fault current under different load loops was performed, and the diagnosis method for low voltage series arc fault based on wavelet packet-energy entropy was proposed. Through the four-layer wavelet packet decomposition of current signals, the wavelet packet-energy entropy was extracted as the feature vectors to describe the energy distribution of arc fault current signals under different frequency bands. The principal components of feature vectors were extracted as the input of BP neural network with the principal component analysis (PCA) method. Therefore, the optimum compression of samples was realized to simplify the structure of neural network. The simulated results show that the proposed method has high accurate rate of fault diagnosis, and can effectively identify the series arc fault.

关 键 词:故障电弧 BP神经网络 故障诊断 电气火灾 主元分析 小波包 小波包能量熵 特征提取 

分 类 号:TM501[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象