检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用研究》2013年第12期3625-3628,共4页Application Research of Computers
基 金:国家"十一五"装备预先研究项目(51317030104);国家自然科学基金资助项目(60771063)
摘 要:故障预测技术是电子装备预测与健康管理(PHM)领域的核心内容,对电子装备关键部件实施有效的预测是保证系统正常运行的关键。首先将灰色理论和人工神经网络算法相结合,构建灰色神经网络模型并对其进行分析;然后在此基础上通过附加动量变学习速率法对灰色神经网络的权值更新策略进行改进,提出一种基于改进灰色神经网络的故障预测模型;最后以某型脉冲测量雷达中频接收组合中的压控振荡器为例,以采集的原始频率数据为基础进行仿真验证。预测结果表明,将该预测方法应用于电子装备PHM是行之有效的,可有效提高故障预测精度。Fault prediction technology is the core content of electronic equipment PHM, carrying out effective prediction on the key components of electronic equipment is the guarantee of system running in normal operation. Firstly, this paper built and analyzed the general grey neural network model by combining grey theory and artificial neural network. Then improved the weight updating strategy of grey neural network by the method of additional momentum and variable learning rate, and put forward a fault prediction method based on improved grey neural network model. Finally, it took a voltage controlled oscillator (VCO) of the intermediate frequency combination in a certain pulse instrumentation radar as an example, and the collected original frequency data as the basis to simulate. The results show that applying the prediction method to electronic equipment PHM can effectively improve the fault prediction accuracy.
关 键 词:故障预测 预测与健康管理 灰色神经网络模型 附加动量变学习速率法 改进灰色神经网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3