检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao-hui HUA Shang-jin XU Yun-ping DENG
机构地区:[1]College of Mathematics and Information Science,Henan Normal University [2]School of Mathematics and Information Science,Guangxi University [3]Department of Mathematics,Shanghai Jiaotong University
出 处:《Acta Mathematicae Applicatae Sinica》2013年第4期837-842,共6页应用数学学报(英文版)
基 金:Supported by the National Natural Science Foundation of China(No.11171020,10961004);the Henan Province Foundation and Frontier Technology Research Plan(No.112300410205);the Education Department of Henan Science and Technology Research Key Project(No.13A110543);the Doctoral Fundamental Research Fund of Hennan Normal University(11102)
摘 要:t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with respect to G if R(G) is not normal in Aut(Г), but R(G) contains a subgroup of index 2 which is normal in Aut(F). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2,p) are either normal or bi-normal when p ≠ 11 is a prime.t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with respect to G if R(G) is not normal in Aut(Г), but R(G) contains a subgroup of index 2 which is normal in Aut(F). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2,p) are either normal or bi-normal when p ≠ 11 is a prime.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249