Tetravalent Edge-transitive Cayley Graphs of PGL(2, p)  

Tetravalent Edge-transitive Cayley Graphs of PGL(2, p)

在线阅读下载全文

作  者:Xiao-hui HUA Shang-jin XU Yun-ping DENG 

机构地区:[1]College of Mathematics and Information Science,Henan Normal University [2]School of Mathematics and Information Science,Guangxi University [3]Department of Mathematics,Shanghai Jiaotong University

出  处:《Acta Mathematicae Applicatae Sinica》2013年第4期837-842,共6页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.11171020,10961004);the Henan Province Foundation and Frontier Technology Research Plan(No.112300410205);the Education Department of Henan Science and Technology Research Key Project(No.13A110543);the Doctoral Fundamental Research Fund of Hennan Normal University(11102)

摘  要:t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with respect to G if R(G) is not normal in Aut(Г), but R(G) contains a subgroup of index 2 which is normal in Aut(F). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2,p) are either normal or bi-normal when p ≠ 11 is a prime.t Let F = Cay(G, S), R(G) be the right regular representation of G. The graph Г is called normal with respect to G, if R(G) is normal in the full automorphism group Aut(F) of F. Г is called a bi-normal with respect to G if R(G) is not normal in Aut(Г), but R(G) contains a subgroup of index 2 which is normal in Aut(F). In this paper, we prove that connected tetravalent edge-transitive Cayley graphs on PGL(2,p) are either normal or bi-normal when p ≠ 11 is a prime.

关 键 词:Cayley graph NORMAL bi-normal simple group 

分 类 号:O157.5[理学—数学] TK4[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象