检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院控制工程系 [2]93132部队
出 处:《哈尔滨工程大学学报》2013年第11期1409-1414,共6页Journal of Harbin Engineering University
基 金:国家自然科学基金资助项目(61273058)
摘 要:针对现有剩余时间估计方法在导弹前置角较大时精度不高的问题,采用分段求解的方法,推导了一种大前置角情况下比例导引律的剩余时间估计算法.首先,对比例导引的闭环运动方程进行变形,得到弹目距离和飞行时间关于前置角的一阶非线性微分方程.然后对前置角的变化区间适当分段,在每段区间内保证前置角的增量为小角度,从而利用一阶泰勒展开求解每段区间内的微分方程.最后,通过分段迭代求解,推导大前置角下的剩余时间估计.仿真结果表明,在典型背景下,该算法能够将大前置角下剩余时间的估计精度由1.2 s提高到0.1 s.The traditional time-to-go estimation approaches often suffer from poor precision when the lead angle of the missile is large in the guidance. To cope with this, a time-to-go estimation algorithm for the proportional naviga- tion guidance law with a large lead angle is proposed by using piecewise linear approximation. Firstly, the first-or- der nonlinear differential equations of range-to-go and flight time with respect to the lead angle are derived by trans- forming the closed-form system equations. Then, the interval of the lead angle is divided into small pieces and the increment of the lead angle in each piece is guaranteed to be a small angle. The differential equations in each piece are solved by using first-order Taylor expansion. Finally, the time-to-go estimation for the large lead angle is ob- tained by piecewise iterations. Simulation results show that, the time-to-go estimation precision is enhanced from 1.2 s to 0.1 s by the algorithm for the large lead angle in the representative scenario.
关 键 词:比例导引 剩余时间估计 前置角 攻击时间控制 反舰导弹
分 类 号:TJ765[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222