检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中航工业洛阳电光设备研究所光电控制技术重点实验室,河南洛阳471009 [2]武汉理工大学信息工程学院,湖北武汉430070
出 处:《红外技术》2013年第12期780-787,共8页Infrared Technology
基 金:国家自然科学基金资助项目;编号:61273241;航空科学基金;编号:20105179002
摘 要:复杂背景下进行舰船目标的跟踪时,在某些帧可能会有目标丢失。为了克服这个问题,采用联合检测-学习-跟踪的TLD算法。其过程是通过训练一种在线可更新的随机蕨分类器对目标跟踪结果进行检测,并使用一种基于时空约束的PN学习策略对分类器进行学习和更新,最后融合跟踪得到的结果对目标进行判别和确定。试验结果表明,该跟踪算法可适用于目标外形改变和遮挡的情况,鲁棒性强,识别率高,误检率低,同时实时性也较好,可以满足一般的在线跟踪系统的要求。When warship targets are tracked in complex background, the targets loss may occur in some frames. In order to overcome the problem, a tracking-learning-detecting (TLD) algorithm is introduced. With the random ferns classifier which is trained online, the detection is performed based on the classification results. PN learning constrained by spatial and temporal features is used to update the classifier. The detection results and tracking results are fused to locate the target in each frame. Finally, experimental result shows that the TLD tracking algorithm has a high recognition rate and a low false detection rate. Benefitting from continuous learning with various target changes in each frame, the TLD algorithm is robust to target appearance changes and occlusion, and has a good real-time performance. The proposed algorithm can meet the requirements of general online tracking system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3