检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学计算机科学与工程学院,广州510640
出 处:《重庆理工大学学报(自然科学)》2013年第11期53-57,64,共6页Journal of Chongqing University of Technology:Natural Science
基 金:国家自然科学基金资助项目(61171141);广东省产学研省部合作专项资金资助项目(2012B091100448)
摘 要:语料库在自然语言处理(NLP)领域的应用越来越广泛,词类共现频率的统计是其研究内容之一。针对词类共现的计算特点,给出了基于MapReduce编程模型实现的并行方法,即pairs和stripes方法[1]。虽然stripes模式性能明显优于pairs模式,但其在词汇表很大时存在内存溢出问题。针对此缺陷,给出了划分词汇表的解决方法,对输入词汇表进行拆分,此过程可利用MapReduce模型进行预处理。实验结果表明:利用MapReduce的并行性能较好地提高海量语料库中词类共现频率统计的效率和性能。Corpus plays more and more important role in natural language processing (NLP) field and co-occurrence statistics is one of its applications. This article provides method based on MapReduce programming model including pairs and stripes approaches to calculate. Although results demonstrate that the stripes approach is much faster than the pairs method and there is a problem of memory over- flow for huge vocabulary. The article gives the solution to the problem with splitting the input vocabu-lary, which can also be handled with MapReduce model. Experimental data demonstrate that MapRe-duce parallelism model will improve the efficiency and performance for massive corpus co-occurrence frequency statistics.
关 键 词:语料库 词类共现频率 自然语言处理 MAPREDUCE HADOOP
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.227.158