检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王醒策[1] 张美霞[1] 武仲科[1] 周明全[1] 曹容菲 田沄[1] 刘新宇[2]
机构地区:[1]北京师范大学信息科学与技术学院,北京100875 [2]中国科学院计算技术研究所前瞻研究实验室,北京100190
出 处:《光学精密工程》2013年第12期3283-3297,共15页Optics and Precision Engineering
基 金:国家自然科学基金资助项目(No.61271366;No.61170170;No.61003134;No.61170203);首都科技条件平台资助项目(Z131110000613062);北京市自然科学基金重点项目(No.4081002);中央高校基本科研业务费专项基金资助项目(No.2012LYB49)
摘 要:考虑对脑血管进行三维分割具有一定难度,提出了一种基于全局LBF(Local Binary Fitting)水平集模型的脑血管层次化粗分割方法。首先,应用定向加权中值(DWM)滤波和各向异性扩散滤波去除脑图像噪声,同时保存血管边缘信息,在多尺度条件下局部梯度最大(LIGM)算法,应用灰度和梯度信息提取备选血管,基本实现脑灰质去除。然后,改进全局信息LBF水平集算法实现最大强度投影(MIP)图像分割,采用形态信息提取备选血管,剔除干扰组织。最后,融合两种方法实现脑血管粗提取。实验表明,层次化的分割方法可去除大部分不相关脑组织,包含直接双高斯统计模型中的所有分割血管信息。本项研究基于时飞磁共振血管造影(TOF_MRA)数据,相关研究结果可扩展到其它相似系统中。To solve the problem that human brain vessels are difficult to be segmented,a level coarse brain vessel segmentation based on the global Local Binary Fitting(LBF) model was presented in the paper.First,the Directional Weight Median(DWM) filtering and the anisotropic diffusion model were used to reduce the noise and to enhance the vessel edges of brain images.Then,the Local Intensity Gradient Maximum(LIGM) algorithm was implemented based on a multi-scale space.The information of intensity and gradient was used to get the vessel candidate set and remove the influence of gray matter in the brain.At the same time,the improved global LBF level set model was used to segment the Maximum Intensity Projection(MIP) image.The vessel voxels were extracted with the conformation information.The results of these two steps were fused together to get the minimal covering set of the brain vessel.The experimental results show that all most the vessel voxels directly segmented by the double Gauss model can be reserved and most uncorrelated voxels can be removed.This research is based on the Time of Flight Magnetic Resonance Angiography(TOF MRA) and it is easy to expand to the similar system.
关 键 词:脑血管三维重构 层次化分割 局部梯度最大算法 局部二值拟合模型 图像融合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.235.50