基于正交试验设计与人工神经网络优化镀铬工艺  被引量:1

Optimization of Chrome-plating Craft Based on Orthogonal Test Design and Artificial Neural Network

在线阅读下载全文

作  者:钟庆阳 李振华[2] 周琼宇[2] 李珂[2] 钟庆东[2] 

机构地区:[1]中国石化集团江汉石油管理局勘察设计研究院,武汉430073 [2]上海大学上海市现代冶金与材料制备重点实验室,上海200072

出  处:《腐蚀与防护》2014年第1期78-82,共5页Corrosion & Protection

基  金:国家自然科学基金(50571059;50615024);汽车用钢开发与应用技术国家重点实验室(宝钢)开放课题;教育部创新团队计划资助项目(IRT0739)

摘  要:提出了一种正交试验设计与人工神经网络相结合的镀铬工艺参数优化方法。样本极差结果表明,对镀铬层的厚度及阴极电流效率影响因素依次为电流密度、电镀时间、电镀温度;且最佳电镀温度为45℃。通过神经网络建立电镀工艺参数与性能之间的模型,预测得出的镀铬层的厚度和阴极电流效率与实际试验的结果接近,训练精度较高,预测值与试验值的相对误差小于1.20%。通过建立镀铬层多指标综合评价模型,对镀铬层的厚度及阴极电流效率两个指标进行综合评价,通过对两个指标权重值的调整,确定镀铬层的综合性能值,得出最优的工艺参数。A method combining orthogonal experimental design with artificial neural networks was proposed to optimize the chrome-plating craft parameter. The results show that the chrome-plating thickness and cathodic efficiency are influenced by the current densily, galvanization time and galvanization temperature in turn; the best galvanization temperature was /i5 C. The model between the galvanization technological parameters and the performance by artificial neural networks was established and the chrome-plating thickness and cathodic efficiency predicted by the model were closed to actual experimental results. The training precision was accurate, and the relati,:e error between the predicted value and the exper{mental value was less than 1. 2%. A comprehensive evaluation model was established to evaluate two indicators which were chrome-plating thickness and cathodic current efficiency. The model adjusted the weight value of two indicators respectively, calculated the chromium plating comprehensive performance value and got the optimal craft parameters.

关 键 词:镀铬 正交试验 人工神经网络 权重值 工艺优化 

分 类 号:TG174[金属学及工艺—金属表面处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象