检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《西南交通大学学报》2013年第6期1002-1007,共6页Journal of Southwest Jiaotong University
基 金:广东省交通厅科技计划资助项目(201102038)
摘 要:为克服参数敏感性分析方法在研究液体黏滞阻尼器最优阻尼参数时计算工作量大、分析效率低的缺点,利用随机振动理论推导了桥梁上部结构振动系统的理论最优阻尼比,得到了线性液体黏滞阻尼器最优阻尼系数的解析表达式.采用能量等效原理,进一步推导了非线性液体粘滞阻尼器的最优阻尼系数的解析表达式.以某连续梁桥为例,采用动力时程法分析了参数的敏感性.分析结果表明:桥梁用线性液体粘滞阻尼器存在理论上的最优阻尼比0.5,其对应的阻尼系数可以使阻尼器的减震效率达到最大值.与线性阻尼器相比,非线性阻尼器的最优阻尼系数和最优阻尼力分别降低了55%~67%及16%~22%.In order to avoid the large computational cost and low efficiency of parametric-sensitivity methods in the parameter optimization of fluid viscous dampers,the theoretical optimum damping ratio of the bridge superstructure vibration system was derived by stochastic vibration method,and an analytical expression for the optimum damping coefficient of linear fluid viscous damper for bridge was then obtained. Meanwhile,the optimum damping coefficient of nonlinear fluid viscous damper for bridge was also derived based on the principle of energy equivalence. In order to verify the reliability of the analytical expression,taking a continuous bridge as an example,the parametric sensitivity on the damping coefficient was analyzed by dynamic time history method. The results show that the theoretical optimum damping ratio of the bridge linear fluid viscous damper is 0. 5,which enables the damper to reach its maximum frequency. Compared with the linear fluid viscous damper,the optimum damping coefficient and damping force of the nonlinear fluid viscous damper is decreased by 55%-67% and 16%-22%,respectively.
关 键 词:液体黏滞阻尼器 参数优化 最优阻尼系数 随机振动 动力时程法
分 类 号:U445.2[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249