检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉轻工大学电气与电子工程学院,湖北武汉430023
出 处:《武汉工业学院学报》2013年第4期48-51,共4页Journal of Wuhan Polytechnic University
基 金:湖北省自然科学基金资助项目(2011CHB030)
摘 要:协同过滤算法是在众多应用领域中最成功的个性化推荐技术之一,但传统协同过滤算法不能及时反映用户的兴趣变化,致使预测结果不准确。针对这个不足,提出一种基于用户兴趣变化的改进协同过滤算法。改进算法提出一种基于时间的权重函数,用于研究用户在不同时间段的兴趣变化,通过用户兴趣之间的相似性,最后生成推荐结果。实验结果验证了改进算法在推荐的准确性方面得到显著提高。Collaborative filtering algorithm is one of the most successful technologies for providing personalized rec- ommendations in various application areas. However,the traditional collaborative filtering algorithms do not reflect the change of users' interest in time. For this reason,the prediction outcome of the traditional collaborative filte- ring approach may be inaccurate when users' interest has changed. Considering this defect,an improved collabora- tive filtering algorithm is proposed to take users' interest change into account in the paper. A time-based weighting function is proposed to study the changes of users' interest in different time periods in the improved algorithm and results in recommendation by comparing the similarity between users' interests. Experiments results show that the new algorithm improves significantly in recommendation effectiveness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222