检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军航空工程学院青岛校区 [2]解放军91286部队
出 处:《火力与指挥控制》2013年第12期48-51,共4页Fire Control & Command Control
基 金:国防科技重点实验室基金资助项目(20120224006)
摘 要:从矩阵论和数理统计理论的角度,阐述了联邦滤波与Gauss-Markov估计的内在联系,论证了联邦全局最优滤波与Gauss-Markov估计的统一性。推导了基于Gauss-Markov估计的联邦滤波信息融合算法,并与最小二乘估计的信息融合算法以及集中卡尔曼滤波算法在舰载组合导航系统中应用进行了对比。仿真结果表明,基于Gauss-Markov估计的联邦滤波信息融合算法与集中式卡尔曼滤波的精度相当,两者的估计精度均高于最小二乘估计,前者具有全局最优性。From the perspective of matrix and mathematical statistics theory, internal connection of federated filter and Markov estimation is formulated. The uniformity of federated global optimal filtering and Gauss-Markov estimation is proved. Meanwhile,the fusion algorithm of federated filtering based on Gauss-Markov estimation and the fusion algorithm based on least squares estimation are taken a deduction and applied to the shipborne integrated navigation system. Simulation results show that filtering accuracy of fusion algorithm of federated filtering based on Gauss-Markov estimation is equal to those of centralized kalman filter. Their estimation accuracy are both higher than those of least squares estimation. The former possesses global optimality.
关 键 词:联邦滤波 Gauss—Markov估计 最优估计 融合算法
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.56