检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟伟金[1]
出 处:《情报理论与实践》2014年第1期131-135,共5页Information Studies:Theory & Application
基 金:教育部人文社会科学研究一般项目"共现词汇语义关系挖掘与本体自动构建研究"的成果;项目编号:10YJC870051
摘 要:文章以学科文献为语料库,构建基于关键词、主题词、副主题词的大型共现词网,分别从同义词、层级关系、相关关系及知识推导四方面实现本体的改造过程。根据相关词标引原理,提炼出"同义相斥、相关相吸"的共现理论,进行同义异形关键词及对应主题词的识别;以《中国分类主题词表》作为工具,实现共现词网主题词的层级关系的标识;以副主题词的组配规则,实现主题词词性的及知识的推导。最终将共现词网改造成集自然语言(关键词)及控制语言(主题词)于一体的领域本体。Taking the disciplinary literatures as the corpus, this paper constructs a large-sized co-occurrence word net based on keywords, subject headings and sub-subject headings, and implements the ontology transformation process from the aspects of synonyms, hierarchical relations, correlationships and knowledge derivation separately. The paper firstly extracts the co-occurrence theory of "synonym mutually repelled, and correlation mutually attracted" according to indexing rules of correlated words to identify the abnormal synonymous keywords; then, takes the Chinese Classified Thesaurus as the tool to mark the hierarchical relations of the subject headings in the co-occurrence word net; and lastly uses the coordinate indexing rules of the sub-subject headings to de- rive the part of speech of subject headings and the knowledge. Finally, the paper transforms the co-occurrence word net into the do- main ontology combining the natural language (keywords) and the control language (subject headings) .
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.139.13