检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学 [2]中国人民解放军91872部队
出 处:《计算机仿真》2014年第1期18-21,30,共5页Computer Simulation
摘 要:为了解决舰艇编队所面临的多批次、多种类目标饱和攻击的火力分配问题,提高突防能力,通过建立编队防空多平台多防空武器的火力分配模型,采用模拟退火策略的自适应遗传算法进行求解与仿真。采用特殊的染色体编码方式使其满足约束条件;利用混沌序列初始化种群,加强种群的多样性;充分利用遗传算法工具箱,自适应调节算法的交叉与变异概率,优化参数,改善算法的收敛性;模拟退火策略增强了算法的局部搜索能力。通过计算机仿真进行求解,优化了火力分配方案,说明改进方法在优化性能上有较大改进,能避免陷入局部最优。仿真验证了模型的可行性和算法的有效性,可为解决火力分配问题提供有效解决方案,为编队防空火力分配提供参考。For the purpose of solving the weapon-target assignment problem which naval warship formation is con- fronted with saturated attacks of multi-groups and multi-types targets, a warship formation antiaircraft weapon-target assignment model was established in allusion to the operation task requirements. An adaptive genetic algorithm with simulated annealing strategy for solving weapon-target assignment problems was proposed. By optimizing parameters of the algorithm, the constringency characteristic of solving such problem was improved. Aimed to the special require- ments of the model solving, a special chromosome coding data structure that can effectively express the warship forma- tion antiaircraft combat effectiveness was put forward. Chaotic sequence generated by logic self-mapping was used to initiate population to enhance the diversity of search strategy. The genetic algorithm toolbox was fully used, and the crossover and mutation operators were given to produce a higher effective weapon-target assignment result. Simulation results show that the method can provide effective solutions for weapon-target assignment problems, and the proposed algorithm has better performance than other proposed evolutionary algorithms. This method can provide support for formations' air-defense warfare operations.
关 键 词:防空作战 武器目标分配 自适应遗传算法 模拟退火 混沌映射
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117