子空间分割指数熵及其在非线性检验中的应用研究  

Subspace Exponent Entropy and Its Application in Nonlinearity Test

在线阅读下载全文

作  者:杨照芳[1] 刘光远[2] 程静[1] 汪琳薇 

机构地区:[1]西南大学计算机与信息科学学院,重庆400715 [2]西南大学电子信息工程学院,重庆400715

出  处:《信号处理》2014年第1期86-92,共7页Journal of Signal Processing

基  金:教育部科学技术研究重大项目(311032);中央高校基本科研业务费专项资金资助(XDJK2012C062);中央高校基本科研业务费专项资金资助(XDJK2013A028)

摘  要:检测时间序列的非线性特性是时间序列分析的必要前提,而非线性检验特征对检测结果的有效性至关重要。提出时间序列重构相空间中点轨迹分布的复杂性测度-子空间分割指数熵,并将子空间分割指数熵与时间反转不对称指数、三阶自相关系数、非线性预测误差和近似熵这四种常用的非线性检验特征进行对比分析。对三阶AR信号、Henon信号、Lorenz信号、心电和皮肤电信号的非线性检测结果表明,子空间分割指数熵能够正确检测各类信号的非线性特性,并且具有较高的抗噪性能,是一种区分度高、鲁棒性好的非线性检验特征。Detecting the nonlinearity of the time series is a prerequisite for time series analysis, while the selection of nonlinearity test statistics is crucial for the validity of the test results. We propose a new test statistic for nonlinearity test named subspace exponent entropy. Subspace exponent entropy divides the reconstructed state space of the time series into subspaees, and then measures the complexity of the phase point distribution in the subspaces. The nonlinearity test experi- ment tests the nonlinearity of five kinds of signals, including AR signal, Henon signal, Lorenz signal, ECG and SCR sig- nal. The length of all the signals is 1000 points. In addition to subspace exponent entropy, we used other four test statistics commonly used in nonlinearity test named time reversibility, higher order autocovariance, nonlinear prediction error and ap- proximate entropy. The experiment results show that the subspace exponent entropy can distinguish the nonlinearity of all signals, and has a high level of anti-noise performance. The subspace exponent entropy is an effective and stable test statis- tic for the nonlinearity test of short and noisy time series.

关 键 词:非线性时间序列 非线性检测 指数熵 替代数据法 

分 类 号:TN911.72[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象