检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴俊林[1] 李志辉[1,2] 彭傲平[1] 蒋新宇[1]
机构地区:[1]中国空气动力研究与发展中心超高速空气动力研究所,四川绵阳621000 [2]国家计算流体力学实验室,北京100191
出 处:《应用数学和力学》2014年第2期121-129,共9页Applied Mathematics and Mechanics
基 金:国家自然科学基金(91016027);国家重点基础研究发展计划(973计划)(2014CB744100)~~
摘 要:构建一种三阶精度的有限体积格式,数值求解考虑转动非平衡影响的Boltzmann-Rykov模型方程.针对模型方程的速度空间离散得到各个离散速度坐标点上彼此独立的控制方程组,运用高阶精度的半离散化有限体积格式在位置空间对离散控制方程进行数值求解,时间项采用三阶Runge-Kutta方法推进,方程右端二体碰撞项采用中心近似技术.该有限体积格式在气体分子对流运动项上具有三阶精度,同时保证了分布函数的正定性和流通量守恒.计算结果与有限差分方法数值模拟结果和连续流区非定常激波管问题的Riemann精确解均吻合较好,说明基于有限体积法的Boltzmann-Rykov模型方程数值求解过程是正确的.A three order precision finite volume scheme was formulated to numerically solve the Boltzmann-Rykov model equation in which rotational energy was considered. This model e- quation was discretized into a series of equations at each discrete velocity point, and then a high order half-discretization finite volume scheme was used to compute these equations. Three order Runge-Kutta method was introduced for time marching, and central value in each cell was taken to approximate the average collision term. This finite volume scheme was of three order precision in convection term, while positive defmiteness of the distribution functions and flux conservation were ensured. Results were compared with those of finite difference method and Riemann exact solution in continuum regime. The good coincidence shows validity of the sol- ving process for the model equation by finite volume method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.120