检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国管理科学》2014年第1期74-83,共10页Chinese Journal of Management Science
基 金:国家自然科学基金面上项目(70671072)
摘 要:设施规划问题主要研究生产设备的布局规划,从而减小厂区内的物料搬运成本。一个有效的设施规划有利于生产过程中整体运作效率的提高。随着市场竞争的日趋激烈,市场环境处于不断的变化之中,制造企业需不断对设施布局进行重新规划来适应不断变化的市场环境对产品需求量的影响,并达到降低成本的目的。这一问题便需要用多阶段设施规划(MFLP)的方法来解决。本文提出了一种改进的混和蚁群算法(HACO)来解决带有财务预算约束的多阶段设施规划问题,并将此方法与其他一些典型的启发式算法进行了对比分析。结果表明,本文提出的HACO算法是求解带有财务预算约束的MFLP问题的一种有效的方法。Facility layout problem mainly studies the layouts of manufacturing facilities, which aims at re- ducing the material handling costs in the plant. An effective facility layout method can contribute to im- prove the overall operation efficiencies during the process of manufacturing. With the increasingly fierce competition in the market, the market environment is constantly changing. Manufacturing enterprises must continuously redesign the facility layout so as to adapt the changing production demands and reduce the cost. This problem requires the solution of Dynamic facility layout problem (DFLP). In this paper, an improved hybrid ant colony optimization (HACO) is proposed to solve the DFLP with budget constraints. The HACO algorithm proposed by this paper can show good performance both for small and for large scale facility layout problems. There exists great gap between HACO and the other algorithms on solving large scale facility layout problems. Therefore, HACO is an effective method to solve dynamic facility layout problem with budget constraints.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31