检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机学报》2001年第2期152-157,共6页Chinese Journal of Computers
摘 要:Web挖掘的一个重要研究方向是发现用户的迁移模式 .一般来说 ,用户的迁移具有某种目的性 .这种目的性表现为用户对某种概念的兴趣 .文中提出基于隐马尔可夫模型的兴趣迁移模式发现方法 ,用于发现这种带有某种兴趣的用户迁移模式 .这种模式实质上是一种特殊的关联规则 .在这种方法中 ,作者首先根据用户的访问记录定义一个隐马尔可夫模型 ,然后提出一种新的增量发现算法 Increase- R用于发现兴趣迁移模式 ,同时给出了证明以说明该算法可以发现所有的兴趣迁移模式 .Mining Navigation patterns is an important research direction in web mining. The discovered Navigation patterns can be used to help the designers to understand the users' access actions, improve the structure design, carry out the advertisement, and get the users' characteristics. In general, a user accesses a web site with some intentions. These intentions represent the interest in some conceptions. So the user's interest has some relation with his navigation path. The users' interest navigation paths compose the users' interest navigation patterns. In this paper, we present a new method for mining interest navigation patterns based on the hidden Markov model in order to discover users' interest navigation patterns. These patterns are a kind of the special association rules essentially. In our approach, we build a hidden Markov model according to web server logs firstly, then we present a new incremental discovery algorithm Increase _R in order to discover the interest navigation patterns, and we testify that the algorithm can find all interest navigation patterns.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117