检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079 [2]中国气象局乌鲁木齐沙漠气象研究所,新疆乌鲁木齐830002
出 处:《灾害学》2014年第1期221-227,共7页Journal of Catastrophology
基 金:公益性行业(气象)科研专项(GYHY201106007);民政部减灾和应急工程重点实验室/资助机构开放基金资助项目(LDRE-RE20120203);中央高校基本科研业务费专项资金资助项目(2012619020202);地理空间信息工程国家测绘地理信息局重点实验室开放研究基金资助项目(201329)
摘 要:对新疆2000-2010年雪灾监测数据进行统计分析,利用时空自相关方法对新疆雪灾进行时空自相关分析,探讨了雪灾的时空演变特征。研究结果表明,新疆雪灾主要发生在1月和2月,分布在北疆地区;不同时间尺度的雪灾的发生具有显著的空间自相关性,呈现显著的聚集模式;雪灾高聚集的区域主要集中在北疆,而雪灾低聚集的区域主要分布在南疆;对相邻的月份来说,上一月份发生的雪灾对下一月份的雪灾有直接影响,即上一个月雪灾高聚集的区域在下一个月也很有可能是雪灾高聚集的区域;随着两个月份相隔的时间越长,上月份的雪灾对下月份雪灾的影响不大。Based on statistical analysis on monitoring data of snow disasters from 2000 to 2010 in Xinjiang, and by using spatio-temporal autocorrelation analysis,the snow disasters are analyzed and their spatio-temporal clustered patterns are explored. The results show that snow disaster that occurs frequently in January and February mainly distributes in Northern Xinjiang. The snow disaster frequencies in different time scales show significant spatial autocorrelation and clustering patterns. The regions with high-high frequencies of snow disasters mainly center on the Northern Xinjiang,while some other regions with low-low frequencies distribute on the Southern Xinjiang. The snow disasters in the current month can affect directly the snow disasters in the next month. In other words,the clustered regions with high snow disaster frequency in the previous month may also be the clustered regions with high values in the next month. However,the influence of the previous snow disaster case on the next snow disaster case gradually decreases with the increasing time intervals between the two months.
分 类 号:P429[天文地球—大气科学及气象学] X43[环境科学与工程—灾害防治]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117