未知探测概率下多目标PHD跟踪算法  被引量:6

Multi-target probability hypothesis density filtering with unknown probability of detection

在线阅读下载全文

作  者:吴鑫辉[1] 黄高明[1] 高俊[1] 

机构地区:[1]海军工程大学电子工程学院,武汉430033

出  处:《控制与决策》2014年第1期57-63,共7页Control and Decision

基  金:国家863计划项目(2010AA7010422;2011AA7014061);国家自然科学基金项目(60901069);中国博士后科学基金项目(200902671)

摘  要:针对未知探测概率下多目标跟踪问题,提出一种基于时变滤波算法的多目标概率假设密度(PHD)滤波器.算法推导了未知探测概率PHD递推式,提出了将未知探测概率转化为目标的丢失与接收事件,并依此建立了目标跟踪的马尔科夫模型,给出了该模型下时变卡尔曼滤波最优解,进而在高斯混和PHD(GMPHD)框架下推导了算法闭集解.仿真实验表明,所提出算法在未知且随时间变化的探测概率情形下,仍能实时地跟踪各目标,具有良好的工程应用前景.According to the general problem of unknown detection probability in the probability hypothesis density(PHD) filter, a PHD algorithm based on the time-varying Kalman filter(TVKF) is proposed. Firstly, PHD recursions without the knowledge of the detection probability are derived. Secondly, the measurements of loss events are modeled as Markov processes, and the optimal estimator with missing sensor data samples is given by using time-varying Kalman filter. Furthermore, the closed form solutions are calculated under the framework of the Gaussian sum based probability hypothesis(GMPHD) filter. The simulation results show that the improved algorithm has better performance in terms of state estimation under the unknown detection probability, and has good application prospects.

关 键 词:多目标跟踪 概率假设密度滤波 马尔科夫模型 时变卡尔曼滤波 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象