检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2014年第1期57-63,共7页Control and Decision
基 金:国家863计划项目(2010AA7010422;2011AA7014061);国家自然科学基金项目(60901069);中国博士后科学基金项目(200902671)
摘 要:针对未知探测概率下多目标跟踪问题,提出一种基于时变滤波算法的多目标概率假设密度(PHD)滤波器.算法推导了未知探测概率PHD递推式,提出了将未知探测概率转化为目标的丢失与接收事件,并依此建立了目标跟踪的马尔科夫模型,给出了该模型下时变卡尔曼滤波最优解,进而在高斯混和PHD(GMPHD)框架下推导了算法闭集解.仿真实验表明,所提出算法在未知且随时间变化的探测概率情形下,仍能实时地跟踪各目标,具有良好的工程应用前景.According to the general problem of unknown detection probability in the probability hypothesis density(PHD) filter, a PHD algorithm based on the time-varying Kalman filter(TVKF) is proposed. Firstly, PHD recursions without the knowledge of the detection probability are derived. Secondly, the measurements of loss events are modeled as Markov processes, and the optimal estimator with missing sensor data samples is given by using time-varying Kalman filter. Furthermore, the closed form solutions are calculated under the framework of the Gaussian sum based probability hypothesis(GMPHD) filter. The simulation results show that the improved algorithm has better performance in terms of state estimation under the unknown detection probability, and has good application prospects.
关 键 词:多目标跟踪 概率假设密度滤波 马尔科夫模型 时变卡尔曼滤波
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15