检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京邮电大学通达学院,南京210003 [2]南京大学计算机软件新技术国家重点实验室,南京210093
出 处:《计算机科学》2014年第2期33-35,54,共4页Computer Science
基 金:国家自然科学基金项目(61035003;60875011;60721002);科技部国际科技合作计划项目(2010DFA11030);973计划项目(2010CB327903);江苏省自然科学基金项目(BK2010054)资助
摘 要:推荐系统根据用户的偏好为用户推荐个性化的信息、产品和服务等,能够帮助用户有效解决信息过载问题。基于内容的协同过滤算法缺少合适的度量指标用来计算项目之间的相似度。提出一种基于耦合对象相似度的项目推荐算法,即通过耦合对象相似度捕获项目特征频率分布相似性和特征依赖聚合相似度。首先从项目文本中抽取项目的关键特征,然后利用耦合对象相似度构建项目相似度模型,最后使用协同过滤的方法为活动用户推荐用户可能感兴趣的项目。在真实数据集上的实验结果表明,基于耦合对象相似度的推荐算法可以有效解决基于内容推荐系统的项目相似度度量问题,在缺失大量项目特征数据的情况下改进传统基于内容推荐系统的推荐质量。Recommender systems are very useful due to the huge volume of information available on the Web. It helps users alleviate the information overload problem by recommending users with the personalized information, products or services. For content-based recommendation algorithm, there are few suitable similarity measures for the content-based recommendation methods to compute the similarity between items. This paper proposed a coupled object similarity based item recommendation algorithm. Our method firstly extracts item features from items, and then constructs item similari- ty model by using coupled object similarity measure. The collaborative filtering technique is then used to produce the recommendations for active users. Experimental results show that our proposed recommendation algorithm effectively solves the problem of similarity measure between items for recommendation algorithm and improves the quality of traditional content-based recommendation when lacking most of the item features.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70