检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学电气与信息工程学院,长沙410082
出 处:《计算机应用》2014年第2期550-552,共3页journal of Computer Applications
基 金:湖南省科技计划重点项目(2012GK2007)
摘 要:受启发于人脸近似对称的先验知识,提出一种基于对称Gabor特征的稀疏表示算法并成功运用于人脸识别。首先把人脸图像进行镜像变换得到其镜像图像,进而将人脸分解为奇偶对称脸。在奇偶对称脸上分别提取Gabor特征,得到Gabor奇偶对称特征。通过一个加权因子,将奇偶特征融合生成新的特征。最后用这种新的特征构成超完备字典进行稀疏表示人脸分类。在人脸数据库AR和FERET上的实验结果表明所提算法在人脸有表情、姿势和光照变化情况下仍能获得较高的识别率。Inspired by prior knowledge of face images' approximate symmetry, an algorithm based on symmetric Gabor features and sparse representation was proposed, which was successfully applied into face recognition in the paper. At first, mirror transform was performed on face images to get their mirror images, with which the face images could be decomposed into odd-even symmetric faces. Then, Gabor features were extracted from both odd faces and even faces to get the Gabor odd-even symmetric features, which could be fused via a weighting factor to generate the new features. At last, the newly obtained features were combined to form an over-complete dictionary which was used by sparse representation to classify the faces. The experimental results on AR and FERET face databases show that the new method can achieve high accuracy even when face images are under expression, pose and illumination variations.
关 键 词:对称Gabor特征 稀疏表示 镜像变换 加权因子 人脸识别
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249