基于色差向量场的彩色光学显微细胞图像分割  被引量:6

Color Optical Microscopic Cell Image Segmentation Based on Color Difference Vector Field

在线阅读下载全文

作  者:关涛[1] 周东翔[1] 刘云辉[2] 

机构地区:[1]国防科学技术大学电子科学与工程学院,湖南长沙410073 [2]香港中文大学机械与自动化工程学系

出  处:《光学学报》2014年第1期154-162,共9页Acta Optica Sinica

基  金:国家自然科学基金(61375032)

摘  要:细胞图像分割是医学图像处理领域的研究热点之一。传统的细胞图像分割算法多是基于灰度图像的分割,图像中的颜色信息利用得不充分。在深入分析细胞图像颜色特征的基础上,提出了基于色差向量场分析细胞图像颜色变化规律的方法,相比于经典的彩色空间(HSV、YIQ、CIEL*a*b*),这种方法更能够突出图像中的主体细胞与非细胞区域的差异,而且针对大量图像的普适性更好。然后基于细胞图像的色差向量场,提出了一种循环匹配的分割方法,同时采用色差强度对分割结果进行了进一步的修正。通过对实际采集的彩色细胞图像样本的分割实验验证,该算法比RGVF Snake算法的分割结果更可靠,准确率可以达到95.2%,而且能够实现不同颜色重叠细胞图像的分割。Cell image segmentation is one of the hot topics algorithms for cell image segmentation are based on grayscale images. Based on analyzing the characteristics of the color cell in medical image processing. Most of the classical images, which results in loss of color information in images, we present a color difference vector field to model the color feature of cell images. In the color difference vector field, the difference between cell region and non-cell region is more distinct compared with other classical color spaces, such as HSV, YIQ and CIEL "a'b" spaces. Furthermore, this method is more robust for a large number of cell images. Based on the color difference vector field, a sequential match method is proposed for segmentation of cell images. In order to obtain more accurate results, the color difference strength is used to refine the segmentation results. Various color cell images containing overlapped cells have been tested to show the validity and effectiveness of the proposed method. The accuracy of the proposed method reaches 95.2 %, which is higher than that of the RGVF Snake method.

关 键 词:图像处理 细胞图像分割 彩色空间 色差向量场 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象