检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]复旦大学信息科学与工程学院,上海200433
出 处:《计算机工程》2014年第2期259-262,共4页Computer Engineering
摘 要:颜色特征是重要的图像视觉特征,颜色相关图则是当前基于内容的图像检索中常用的特征描述符,但现有基于颜色相关图的图像检索算法存在计算复杂度高、检索精确度低的问题。为此,提出基于颜色自相关图和互信息的图像检索算法。给出一种新的颜色特征描述符——颜色互信息,通过计算颜色相关图特征矩阵中每个颜色与其周围颜色的平均互信息,得到不同颜色之间的全局及空间分布特性,并作为新的颜色特征矢量,以降低计算复杂度。同时采用外部特征矢量归一化方法结合颜色互信息与颜色自相关算法,以提高检索精确度。实验结果表明,该算法可有效降低计算复杂度,提高实时响应性能和检索精度。Color is an important visual feature. Color Correlogram(CC) algorithm is commonly used in the color based image retrieval as a feature descriptor, but most of the existing methods based on CC have problems of high computational complexity and low retrieval accuracy. Aiming at this problem, this paper proposes an image retrieval algorithm based on color autocorrelogram and mutual information. It presents a novel color feature descriptor, namely Color Mutual Information(CMI). The new color feature vector which describes the global and spatial distribution relation among different colors is obtained by calculating the average mutual information between one color and all the colors around it in the CC feature matrix, thus reducing the computational complexity. Inter-feature normalization is applied in the combination of CMI and color autocorrelogram to enhance the retrieval accuracy. Experimental result shows that this integrated method can reduce the computational complexity, improves real-time response speed and retrieval accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.78