检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏华斌[1]
机构地区:[1]武夷学院数学与计算机学院,福建武夷山354300
出 处:《武夷学院学报》2013年第5期46-51,共6页Journal of Wuyi University
基 金:福建省自然科学基金资助项目(2013J01017)
摘 要:Cable方程是模拟神经元动力学最重要的方程之一,有关该方程的研究得到了越来越多的关注。最近的研究发现,用带有分数阶导数的Cable方程来模拟神经元的动力学行为效果更好。本文旨在考察时间分数阶Cable方程的初边值问题,构造了时间分数阶Cable方程的有限差分格式。对于时间半离散格式,我们证明了格式的稳定性,并给出了误差估计式。The cable equation has become one of the most important equations for simulating neurodynamics. The research about this equation has attracted more and more attention. Some recent developments have found that it's more effective to use the fractional deriva- tive cable equation to simulate the dynamic behavior of neurons. There exists a number of works concerning this equation. In particular, the numerical method has been subject of many investigations. The main work of this paper is to investigate a deformation of the time Fractional Cable equation with the initial boundary value problem,constructing the finite difference scheme of the time fractional Cable e- quation. For the time semi--discretization, we have proved the stability of the scheme and derive the error estimate.
关 键 词:分数阶Cable方程 有限差分格式 稳定性 误差分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112