SIFT与核局部不变映射结合的特征描述算法  被引量:2

Novel feature-describing algorithm based on combination of SIFT and kernel locality preserving projection

在线阅读下载全文

作  者:周理[1] 毕笃彦[1] 何林远[1] 胡云宝[2] 

机构地区:[1]空军工程大学航空航天工程学院通信导航教研室 [2]中国人民解放军93787部队

出  处:《系统工程与电子技术》2014年第2期382-389,共8页Systems Engineering and Electronics

基  金:国家自然科学基金(61175029);国防科技重点实验室基金(9140c610301080c6106);航空科学基金(20101996009)资助课题

摘  要:为更好地实现图像跟踪,寻找更具鲁棒性和计算简便的特征描述子,提出了一种基于核局部不变映射的尺度不变特征转换(scale-invariant feature transform,SIFT)特征描述算法。该算法在继承SIFT算法良好性质的基础上,依据不同空间尺度下能量特征差异性,对尺度内的子图像层数进行细化,以提高稳定特征点的数量。此外,借助核方法的映射特性,解决了局部不变映射法丢失非线性高维特征的问题,形成一种基于核局部不变映射的非线性降维法,进而对特征描述子进行特征重划。实验结果表明,在图像尺度缩放、旋转、模糊、亮度变化等多种场景下,相较现有的主成分分析-SIFT算法,该描述子不但取得更多的稳定特征点,而且计算速度也得到大幅提升。In order to better realize image tracking, a feature describing scale invariant feature transform (SIFT) algorithm based on the kernel locality preserving proiections (LPP) is proposed to search a more robust and convenient feature descriptor. In the algorithm, SIFT properties are well inherited, and the numbers of sub image plies are refined to increase the amount of stable feature points according to the difference of energy cha- racteristics in every scale space. Moreover, a nonlinear dimension-falling method based on the kernel LPP is formed to redraw feature descriptors By the kernel technique. With this function, the improved I.PP can extract high-dimensional features. The result shows that the novel algorithm can obtain more and better feature points, and its calculating speed quite faster than the principal component analysis SIFT in various scenarios like zoom, rotation, blur and illumination variation of images.

关 键 词:尺度不变特征转换算法 核局部不变映射 能量特征 核方法 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象