基于多分类器融合的雷达高分辨距离像目标识别与拒判新方法  被引量:21

A New Method to Improve Radar HRRP Recognition and Outlier Rejection Performances Based on Classifier Combination

在线阅读下载全文

作  者:张学峰[1] 王鹏辉[1] 冯博[1] 杜兰[1] 刘宏伟[1] 

机构地区:[1]西安电子科技大学雷达信号处理国家重点实验室,西安710071

出  处:《自动化学报》2014年第2期348-356,共9页Acta Automatica Sinica

基  金:国家自然科学基金(61271024;61201292;61201283);新世纪优秀人才支持计划(NCET-09-0630);全国优秀博士学位论文作者专项资金资助项目(FANEDD-201156);中央高校基本科研业务费专项资金资助~~

摘  要:由于雷达自动目标识别(Radar automatic target recognition,RATR)中库外目标的存在,评价系统性能时应综合考虑其识别性能和拒判性能.由此本文构造了一种将分类器的输出通过最近邻分类器(Nearest neighbor,NN)进行拒判和识别的"分类器–最近邻"系统,并在拒判和识别两个阶段分别采用多分类器融合技术以提高RATR系统的拒判和识别综合性能.此外,文中定义了一种代价函数以衡量系统综合性能并为系统拒判工作点的选取提供依据.进而,采用局部法和全局法两种算法确定拒判器的工作点.实测数据实验结果验证了本文方法的有效性,两种工作点选取算法均能够显著提高识别系统的综合性能.Because of the presence of outlier samples, it is important to take both the recognition and rejection perfor- mances into account when evaluating a radar automatic target recognition (RATR) system. In this paper, we propose to utilize the nearest neighbor (NN) classifier with the inputs being the outputs of a classifier, referred to as "Classifer-NN" system, to identify outliers. In order to improve the performance, several "Classifer-NN" systems are combined. A cost function is defined to measure the recognition and rejection performance of the RATR system. Two algorithms are devel- oped to select the optimal work point of each "Classifer-NN" system. Experimental results based on the measured HRRP dataset have validated the effectiveness of the proposed methods.

关 键 词:雷达自动目标识别 多分类器融合 库外样本拒判 最优工作点选择 

分 类 号:TN957.52[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象