检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《机械工程师》2014年第1期36-38,共3页Mechanical Engineer
摘 要:结合OpenCV与VC技术,提出了一种基于图像处理技术的微光瞄准镜故障检验的方法。首先通过采集微光瞄准镜图像得到30幅图像,把30幅图像求平均后得到一帧标准图像。经过中值滤波处理,然后用采集到的有故障的图像与标准图像相减,判断出所采集的图像与标准图像是否存在差异点,从而判断出是否存在故障,该种方法就是图像减影法。经过实验得到了减影后有故障的图像,证实了该算法的可用性。该算法简单实用,可以较好地识别出微光瞄准镜上如亮点、黑斑等的故障。相比于大多数减影法,不但很好地结合了OpenCV技术,更在识别精度上有了很大的提高和灵活性。Combining with OpenCV and VC technology, this paper proposes a fault test of low-light level sight method based on image processing. 30 images are obtained by colleeting low-light level sight images. Averaging of 30 images, a standard one is obtained. After median filtering, whether there are some different points can be judged with collected image subtracting the standard image, which can determine whether there exists a fauh. The method is called image subtraction method. After repeated experiments, the defective image is used to eonfirm the availability of the algorithm. The method of the algorithm is simple, practical, and can extract identify the faults such as bright spots, dark spots on the low-light level sight. Compared with the other subtraction methods, the method not only combines with OpenCV technology preferable, but also has a big enhancement and flexibility on the recognition aceuraey.
关 键 词:微光瞄准镜故障 图像求平均 中值滤波 图像减影法
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222